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In aerodynamics, use has previously been made chiefly of Euler's and boundary-layer equations in which 
the bulk viscosity is not of the same order and is consequently omitted. In fact, the ratio of the bulk 
viscosity gradient to the convective part of the equation of motion will be of the order of the inverse 
Reynolds number, provided that the dynamic and bulk viscosity coefficients are commensurate and the 
velocity divergence will be of the order of the ratio of the characteristic velocity to the characteristic 
length. As a result, in handbooks on gas mechanics, the bulk viscosity is either generally ignored or is 
described insufficiently clearly [1], including, for example, in the problem of sound propagation [2]. 
However, at present, to calculate the laminar flows of a compressible fluid, the equations of gas dynamics 
in the Navier-Stokes-Fourier approximation (or, more concisely, the Navier-Stokes equations) are 
widely used, in which account is taken of terms of the order of the inverse Reynolds number, and 
therefore it is necessary to analyse the role of bulk viscosity problems of gas flows around bodies. 

Different areas of the kinetic theory of bulk viscosity have been developed [3-11], but insufficient 
attention has been paid to its simple qualitative modest [8, 11]. 

The question of the definition of the temperature remains debatable [5, 6, 9]. In the case of ideal 
polyatomic gases, the bulk viscosity occurs in the expression for the stress tensor, provided the distribution 
over the internal energies of the molecules is close to local equilibriated, and the temperature T is defined 
from the total internal energy of the gas (as in the thermodynamics of irreversible processes). If the 
temperature is defined from the translational energy of the particles (the translational temperature of 
the gas Tt), then the stress tensor has the same form irrespective of the degree of excitation of the internal 
degrees of freedom of the molecules, and the bulk viscosity is not present, but similar term occurs in 
the expression for the internal energy of the gas. Such a definition of the temperature is more "physical", 
since the stress tensor is determined by transfer of the momentum of the particles [5, 6]. In non-ideal 
(dense) monatomic gases the bulk viscosity is governed by the potential energy of interaction of the 
molecules. When the temperature Tt is introduced, the expression for the bulk viscosity coefficient 
changes, and a similar term occurs in the formula for the internal energy of the gas [9]. 

A similar problem arises with the relaxation pressure - a fine effect which occurs in gas flows, provided 
that some of the internal degrees of freedom of the molecules are close to the locally equilibriated state 
while others relax [4-8, 10, 11]. 

A consequence of the generalized Chapman-Enskog method (Section 1) is a general system of 
equations of physicochemical (relaxation) gas dynamics - a system of equations with level kinetics [5, 
6]. The latter describes, in particular, the regions of gas flows where the internal degrees of freedom 
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of the molecules are frozen. The concept of the translational temperature I t is employed. The stress 
tensor does not change its form as a function of the degree of excitation of the internal degrees of 
freedom of the molecules. Expressions for the bulk viscosity and relaxation pressure are obtained by 
taking the limit as "r/t, --4 0 and by redefinition of temperature Tt to T, where "~ is the time of relaxation 
of the "rapid" process of the establishment of a quasi-equilibrium state, and t, is the gas dynamic time. 
These quantities characterize the difference of Tt from the temperature T, defined taking the internal 
energy of molecules for rapid processes into account. 

Sections 2 and 3 illustrate the positions of the general theory on the well-known [8, 12] relaxation 
gas dynamic models without turning to kinetic theory. 

Below, we consider a gas with rotational degrees of freedom close to local equilibriated, and with 
the remaining internal degrees of freedom of the molecules frozen. We emphasize that, when the 
temperature Tt is used, the systems of equations for scalar corrections to the distribution functions are 
simplified (Section 4). Our main attention is devoted to a qualitative examination. Questions of the 
significance of bulk viscosity are illustrated by simple but representative examples (Sections 6 and 7). 
Similar questions for the relaxation pressure are more complex, have not been developed and are not 
considered here. 

1. THE G E N E R A L I Z E D  C H A P M A N - E N S K O G  M E T H O D  

We will consider the case of ideal gases whose molecules interact only on instantaneous collisions, in 
the quasi-classical approximation, when the translational energy of the molecules is considered classically 
and the internal energy is treated quantum-mechanically [3-8]. There are no chemical reactions. The 
system of general equations of physiochemical gas dynamics includes equations of the balance of 
populations no, momentum and internal energy (see the reviews [5, 6]) 

Dn~ V 
- ~  +rico . u +  V.ntoVto = rco, Kco = IJco(f ,f)d~ (1.1) 

D u  
P'D--7 + V. II = 0 (1.2) 

Here 

D~ 
n-b-7 +II: V u + V . q  = 0 

D 
0-5 = ~ + u . V ,  ,, = ]~no,, 

o) 

p = m n  

(1.3) 

nco is the number density of particles in quantum state 03, i.e. possessing internal energy Eco, and 
Jo~(f, f )  is the operator of inelastic collisions in the kinetic equation; summation is carried out for all 
values of the subscripts 03, ~ = 0, 1, 2, . . . ,  N, where N is the number of quantum levels, and m is the 
mass of a molecule. 

Summing Eq. (1.1) over 03, we obtain the continuity equation 

Dn 
O---t + n V .  u = 0 (1 .4 )  

The generalized Chapman-Enskog method gives the series for the distribution functions 
foJ = f (oy+ f(a) ... according to the Knudsen number Kn ~ 1 relative to the locally Maxwell function 

f(O) fh~ 3/2 t~ = n ~ )  exp(-hc2), e = ~ - u ,  h -  m (1.5) 
2 k T  t 

where m is the mass and { is the velocity of the particle. The perturbation 

{ } : ,~, D.,~,c V ~  �9 ,co:(1) = f~) -A~c" VInTt-B o cc-~Ic Vu- �9 n -G~ 

= O(Kn) 
f(o) 

(1.6) 
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Here I is the unit tensor, andA, B, D and G are scalar coefficients of the order of  the Knudsen number 
Kn; they depend on hc 2 and the independent of the gradients of the macroparameters and explicitly 
of u. 

We will consider the version of the method when the following quantities are defined in terms off(~ 

<o) 1 (o) 
= I:o u = aY r:o_  nco 

f.o 

3 ~in ~in nco 

fl) 

3 -1 o)m 2 
Tt = (~nk) ZIfo ~c dc 

CO 

(1.7) 

where % is the specific internal energy of the gas, k is Boltzmann's constant and the quantity ~in is 
governed by the internal energy of the molecules. 

Formulae (1.7) yield the conditions for the solution of the integral equations for the coefficientsA, 
B, D and G to be unique. The vector terms (in terms of e) of expression (1.6) define the diffusion rates 
V0~ and the heat flux vector q. The stress tensor 

Z I (0) (1) II = m ( f o  + f o  )cedc = P I + • ,  P = nkTt (1.8) 
s 

where P is the trace of the stress tensor, "rr is the divergentless tensor (with zero trace) 

~ I (~ ( ~ ):Vueede=-2TIS (1.9) = -  m f o  Bo c c -  Ic  2 
~o 

rl is the dynamic viscosity coefficient and S is the shear rate tensor with the Cartesian components 

l(Ouj Oui'~ 1~ 
Sij = 2~,Oxi+-~Tjxj)--~v'uIij, i,j = 1,2,3 

Finally, the right-hand side of Eq. (1.1) 

(0). (I) . g(O) ij(ffo),f(O))de, .(I) I Ko~ = Ko~ § (G) ,  "-c0 = = ~o L(f  (~ ff~ G) dc (1.10) 

i.e. K ~  ) is calculated f r o m f  = f(0), and L is the linearized (with respect t o f  (~ and symmetrized [5, 6] 
operator of inelastic collisions. Only the scalar term G0~ (in terms of e) of expression (1.6) contributes 
to K ~  ). The fact that, in near-equilibrium situations, the terms of formula (1.10) are quantities of identical 
order [5, 6] is fundamental. 

If rotations and vibrations of the molecules are excited, then co = o~13, ot = 0, 1, 2, . . . ,  Am, and [3 = 
0, 1, 2, . . . ,  Nv, where NR and Nv are the numbers of rotational and vibrational levels respectively. It 
is assumed that the rotational energy of a molecule Eu is independent of its vibrational state [8], so 
that 

% i . =  %n +%v, %R = ~ E a ~ ,  %v = ~,dE[~ (1.11) 

Suppose the rotations of the molecules are rapid processes, i.e. ZR/t, ~ 1, and the vibrations are slow 
processes, i.e. Zv/t, - 1, where zR and zv are the rotational and vibrational relaxation times, and t, is 
the gas-dynamic time. 

The appearance of the small parameter xn/t, - Kn enables us to find an approximate solution for 
no0 and to transfer to a brief gas-dynamic description. Here it is sufficient to confine ourselves to the 
Euler approximation on the left-hand sides of Eqs (1.1) and (1.3), omitting the terms with Vc0, ~ and 
q: allowance for these terms yields higher-order terms. Remember  that, in deriving equations for 
determining the coefficients A, B and D in expression (1.6), the convective part of the kinetic equation 
is transformed within the framework of the Euler approximation. Taking the above and Eq. (1.4) into 
account, we will sum Eqs (1.1) over the vibrational levels [3. We obtain 

n---~- Dya = Kc~n(~ + K~n(~ + R~ l)n (1.12) 
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where 

n~ 
Y a = n '  n a = E n ~  R a = y ~ K ~  

and na is the rotational population. The quantities with the superscript R include only rotational and 
translational-rotational exchanges, and the quantities with superscript V include only exchanges of 
vibrational energy [10]. The term R~ )v is omitted as being of a higher order. 

In dimensionless form, the term R~ )n - 1/Kn, and the remaining terms of Eq. (1.12) are of the order 
of unity. We will seek a solution in the form 

_(o) . (1) 0 ) .  (o) O(Kn) Ya = Ya +Ya , Yc~ /Ya = 

In the zeroth approximation we have 

R(o)R = 0 ~ y(a O) = y~a(rt) (1.13) 

where the Boltzmann function 

yeaq(T, ) Sa = ~exp(-Ea),  
E~ 

Q = ]~Saexp(-e=), e ,  = kT---'~, (1.14) 
O~ 

and Sa is the statistical weight of the rotational level a. 
The system of equations for the slow variables, i.e. for the relative vibrational populations 

y[~ = nl~, n13 = E n ~  
n 

Ot 

is obtained by summing Eqs (1.1) over a taking Eq. (1.4) into account 

= ~ n ' (~  ( 1 . 1 5 )  nDY~+ V.nfjVf~ = R~~ nf~Vfj = ~.,,,oV,o, ~ ~.,--,o 
Dt 

Ot Ot 

The right-hand side of Eq. (1.15) results from the vibrational exchanges and is calculated forfi ~ With 
the assumptions made, the quantity R[ 1)V is of the order of Kn compared with R[ ~ and is therefore 
omitted. 

In the expressions for 11, V~ and q, with an error O(Kn) compared with unity, the population nab is 
eq (0) replaced by ya (Tt)n~. After linearization with respect to y , the right-hand side of Eq. (1.12) will be 

linear in y0) and contain, generally speaking, a free term (independent of n0)). The left-hand side of 
Eq. (1.12) must be set equal to 

Oy~ ) dyeaq(T,)OT, 
n----~- = n dT, Dt (1.16) 

where 

DTt - C-o 1 kTtV.U+nZ.d,~f~,,fj ), C v = r2 k + c  o 
Dt f~ 

(1.17) 

The "rotational" specific heat at constant volume 

R d eq 
C v ---- - ~ t ~ R ( T t ) ,  ~eRq = E E a y ~ ( T t )  (1.18) 



On the theory of bulk viscosity and relaxation pressure 947 

Formula (1.17) was obtained neglecting terms of the order of Kn in Eqs (1.3) and (1.15). These 
equations take the form 

D 3 %~q + %v (1.19) b5  kT, + + kr ,  v .  u = o, = 

Equality (1.17) follows from relations (1.19). 
Taking into account equalities (1.16) and (1.17), for y~ ) we find a system of linear algebraic equations 

with an inhomogeneous part that is linear in V �9 u. As a result 

y~l) = as + ba V . u 

where the coefficients as and b~ are proportional to Kn. 
Consequently 

~kT, + %R 3 eq ]F Ea(ae~ + baV.  u) (1.20) = =2kT,+%R(Tt)+Q, Q = 

The quantity Q is the non-equilibrium correction to the internal energy of the gas, which is governed 
by translational, rotational and vibrational degrees of freedom of the molecules. Instead of equality 
(1.20), in the thermodynamics of irreversible processes, the following expression is used 

~kT, + %R = ~kT + %~q(T) (1.21) 

where T is the translational-rotational temperature. In order to switch from equality (1.20) to (1.21), 
we will perturb the translational temperature 

T, = T + T  ~) ,  T<I)IT = O ( K n )  

Linearizing formula (1.2) and subtracting from the expression obtained the magnitude of the right-hand 
side of equality (1.21), we obtain 

T <t) = T t - T  = - C ~  IQ (1.22) 

The non-equilibrium correction Q characterizes the difference in the translational and translational- 
rotational temperatures [11]. The quantity C~ is defined by the final formula of system (1.17). 

Taking into account relation (1.22), we reduce expression (1.8) to the form 

II = ( p + p r e l - ~ V . u ) I - 2 r l S ,  p = nkT (1.23) 

The formulae for the bulk viscosity coefficient g and the relaxation pressure Pre! can obviously be 
obtained from the previous formulae. Approximate formulae are given in Sections 2 and 3. Rigorous 
expressions for 4, Prel, V~ and q are known [7]. 

The reduced system of  equations consists of Eqs (1.2)-(1.4) and N v -  1 equations (1.15) for the relative 
vibrational populations y~. The stress tensor is given by formula (1.23). The internal energy of the gas 

% = ~kT+%~q(T)+%v, %v = y Ef~yf~ (1.24) 
f~ 

In all instances, Tt is replaced by T. If the vibrations are frozen, system (1.2)-(1.4) holds and the quantities 
Prel, V[5 and %v are omitted. The heat flux vector takes the form 

q = -~,VT (1.25) 

where )~ is the thermal conductivity. 
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2. MODEL OF THE RELAXATION OF ROTATIONAL ENERGY 

Here and in the following section, the general theory of bulk viscosity and relaxation pressure described 
above will be illustrated on gas dynamic models, avoiding kinetic theory. As stated in Section 1, the 
balance equations in the Euler approximation are used. The trace of the stress tensor 

P = n k T  t (2.1) 

We will consider a gas with relaxing rotational degrees of freedom of the molecules, and the vibrations 
frozen. The energy equation (1.3) takes the form 

D% % 3 
+ k T t V .  u = O, = ~ k T ,  + %R (2.2) 

D t  

where % is the internal energy of the gas, referred to the number of particles per unit volume. 
For the rotational energy %n, we will use the simplest relaxation equation [8, 12] 

D~;R _ I [%~q(T,)_%R] (2.3) 
D t  "c R 

where "oR is the rotational relaxation time, and %~q is the known equilibrium function Tt (see formulae 
(1.14) and (1.18)). Equation (2.3) is obtained from Eq. (1.12), if we omit R(a ~ (the vibrations are frozen), 
assume the term R~ )R to be negligibly small, multiply by Ea, sum in terms of a and approximate the 
right-hand side with the simplest relaxation expression. 

Local equilibrium (i.e. completely excited rotations) occurs in the limit as xn / t .  ~ O. We will write 
the solution of Eq. (2.3) for this case in the form of a series power of us 

%, = ~ o )  + ~ , ,~ ] , )  + . . .  

In the zeroth approximation, we have the equilibrium solution 

(2.4) 

%(R~ = %~q(T,) (2.5) 

In the following approximation, taking (1.4) and (2.2)-(2.5) into account, we obtain 

(2.6) 
_~(RI) _ O~eRq(Tt) RDTt  R -1 

D t  - c v ' - ~  = - k T t c v C ~  V �9 u 

The quantities Cu and c~ are given by formulae (1.7) and (1.18). Using relations (2.6), we reduce the 
second formula of system (2.2) to the form 

(2.7) % = ~kT,3 + %~q(Tt) + A ( T , ) V  �9 u 

A ( T t  ) R -1 = "CRcokTtC v (2.8) 

We omit quantities proportional to x~, n _> 2 everywhere. 
We emphasize that the term A V  �9 u is the relaxation contribution to the energy of the gas. Here, 

according to formula (2.1), the hydrostatic pressure nkT t  is calculated from the translational temperature 
Tt. We will introduce the translational-rotational temperature T by the equality 

% = ~kT+~Rq(T) (2.9) 

where for %, formula (2.7) also holds. 
We will perturb [5] the translational temperature T t = T + ~RT (1). Linearizing the right-hand side of 

formula (2.7) with respect to xR, and equating it to the right-hand side of formula (2.9), we find 

Cv'CRT(O + A V . u  = 0 
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such that 

T t -  T = "cRT {l) = - A ( T ) c - o l v  �9 u - - l q v ,  u (2.10) 

Substituting the expressions (2.8) and (2.10) into the right-hand side of equality (2.1), we "convert" 
the relaxation term into the stress tensor such that its trace 

P = nkT  t = p - g V . u ,  p = nkT (2.11) 

where the pressurep is calculated from the translational-rotational temperature T. Taking into account 
formulae (2.8) and (2.10), we write the expression for the bulk viscosity coefficient 

2 R 3 nk T'cRco(T)(~k R -2 = +co(T)  ) (2.12) 

For the coefficientA, in the non-equilibrium correction to the specific internal energy (2.7), we obtain 
the expression 

Co(Tt)g(T, ) 
A(Tt)  = (2.13) 

The quantity g(Tt) is given by formula (2.12) with T replaced by Tt. 
By virtue of relations (2.10), the difference between the translational and translational-rotational 

temperatures is proportional [11] to the bulk viscosity: gV �9 u. 

3. MODEL OF R O T A T I O N A L - V I B R A T I O N A L  RELAXATION 

Suppose that, apart from rotations, vibrations of the molecules are also excited in the gas. The energy 
equation is given by the first formula of system (2.2), but vibrational energy % v is added to the expression 
for the specific internal energy of the gas, i.e. 

3 
= ~ k T t + ~ R + ~  v (3.1) 

The rotational energy %R satisfies Eq. (2.3), and for the energy % vwe consider the relaxation equation 

D % v _  1 eq 

Dt Zv [%v (Tt) - %v] (3.2) 

to hold, where Xv is the vibrational relaxation time. 
Equation (3.2) is obtained from Eq. (1.15) in the Euler approximation (when V[~ = 0) by multiplying 

by E[~ and summing over [3 for a model of the molecules - harmonic oscillators with single-quantum 
transitions [4]. 

Suppose, as in Section 2, that "OR~t, ---) O. We will consider the case of slowed exchanges of vibrational 
energy of the molecules: "Cv/t, = O(1). Again, we expand the solution of Eq. (2.3) in series (2.4). As 
above, we obtain 

%(0) eq __~(1) RDT, 
= %R (T,) ,  = cv Dt 

Using the energy equation (the first formula of system (2.2)), expression (3.1) for the specific internal 
energy of the gas and relaxation equation (3.2), we find 

( ~ ) DT, = _Col k T t V .  u + %v ( T t ) - % v  
Dt z v 

The quantity Cv is defined by formulae (1.17) and (1.18). 
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Perturbing Tt with respect to the rotational-translational temperature T, in much the same way as in 
Section 2, we obtain formula (1.24) for the specific internal energy of the gas, and instead of formula 
(2.11) we obtain the expression 

P = P + P r e l - q V ' u ,  p = n k T  

The gas flow is described by the system of equations shown at the end of Section 1. The bulk viscosity 
coefficient q is given by formula (2.12). 

The stress tensor contained the relaxation pressure 

eq 
<gv ( T) - %v 

Prel = -k"-T X v (3.3) 

Expression (3.3) is identical with the expression obtained earlier [10] by the modified Chapman- 
Enskog method. 

Relaxation pressure occurs in the case of simultaneous rapid (rotations) and slow (vibrations) 
exchanges of internal energy of the molecules [4, 7, 10]. The role of chemical reactions is similar to the 
role of vibrations: if their relaxation time Xc ---> O, then they make a contribution to 4, and if "Cc = O(1), 
the contribute to the relaxation pressure [7]. 

4. THE D E F I N I T I O N  OF T E M P E R A T U R E  IN THE C H A P M A N - E N S K O G  
M E T H O D  

The bulk viscosity coefficient and the relaxation pressure are normally calculated for specific limit 
situations [7], and not on the basis of the relaxation description given above (an approach similar to 
that described in Section 2 and 3 was used when Grad's method was employed [8]). The solution of 
the system of kinetic equations is sought in the form of the seriesf~ ) + f~) + ....  where the distribution 
function f~) is locally equilibrium with respect to the velocities of the molecules and with respect to 
part of their internal energy, taking into account of which the temperature T is defined. The solution 
of systems of integral equations for the constituents of the function f~) becomes unique when the 
conditions of [3] are added, one of which is simplified when the temperature is defined basing on the 
translational degrees of freedom. As a result, the system of equations for determining the scalar 
constituent of the functionf~ ) becomes simpler. 

We will illustrate the above using the simplest example [3]. A gas with excited rotational degrees of 
freedom is examined (as above, the rotational levels are denoted by cx, and the vibrations are frozen). 
The scalar component of the function f(a 1) has the form 

-( lln)f~)FaV �9 u (4.1) 

where f~) is the Maxwell-Boltzmann distribution function, and Fa is a function of hc 2 and EJ(kT). 
The system of equations for the scalar quantity F~ is solved under the conditions [3] 

EIf(a~ = 0, EIf(a~ + EeL)de = 0 (4.2) 
ot c~ 

following from the requirements that with respect to f(a ~ the numerical density and translational- 
rotational energy of the gas (2.9) are determined. The solution is sought in the form of a series in 
orthogonal polynomials, and the simplest approximation, enabling us to satisfy conditions (4.2), has 
the form [3] 

Fa = Yl ( hc2 - 3/2) + y2(%~(T) - Ec,) (4.3) 

From the second condition of (4.2) we obtain a linear relation between the coefficients Y1 and T2 [3], 
and it follows that the perturbation (4.1) contributes -~V �9 u to the trace of the stress tensor (2.11), 
and the bulk viscosity coefficient ~ is proportional to ~1 [3]. 

If the temperature is defined basing on the translational degrees of freedom, then, instead of the 
second condition of (4.2), we will have the simpler condition 

~ , ~ f ~ ) F , : 2 d c  = 0 (4.4) 
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and consequently the simpler approximation 

r,~ = y3(%~(T,) - E a) (4.5) 

We recall that the coefficients 7k are constant quantities (k = 1, 2, 3). By virtue of condition (4.4), 
the perturbation (4.1) and (4.5) makes a contribution only to the expression for the specific internal 
energy (2.7). By using equations given in [3], it is easy to prove the validity of formula (2.13). 

The computing advantages of introducing Tt increase on changing to more complex cases (for example, 
a mixture of gases with quasi-stationary vibrational states [7]). 

5. THE BULK VISCOSITY C O E F F I C I E N T  AND THERMAL 
CONDUCTIVITY 

Consider the transport properties of a gas with rotational degrees of freedom of the molecules close 
to local equilibrium (the case of rapid exchanges of rotational energy of the molecules). The vibrations 
of the molecules are frozen, and there are no chemical reactions. The stress tensor is given by formula 
(1.23), where, in the given case, Prel = 0. We will ignore the dependence of the dynamic viscosity 
coefficient 11 on the rotational degrees of freedom [3], and for the function rl(T) there are reliable 
experimental data. 

We will write formula (2.12) for the bulk viscosity coefficient g in the form 

1 n (3 n~ -a xn _rc'q 
q= 7~nkconZ sk +co) ; Z =  --s x , -  47, (5.1) 

where xt is the relaxation time of the translational degrees of freedom of the molecules. 
The same expression for g is obtained by the Chapman-Enskog method in the main approximation 

in terms of Sonine and Waldmann-Triibenbacher polynomials in [8]. Below, the specific heat capacity 
R c,, governed by the rotational degrees of freedom of the molecules, is assumed to be equal to k (a 

diatomic gas; here, the specific-heat ratio y = 7/5, %~q = kT). For the ratio of the rotational and 
translational relaxation times Z, Parker's approximation formula 

3/2 2 -1 

is often used and also a revised formula [8] differing from (5.2) by the presence in square brackets of 
the additional term/~3/203/2. 

For nitrogen, T, = 91.5 K and Z~ = 18.2. 
Figure 1 shows graphs of the ratio g/rl against T, calculated for nitrogen from formula (5.1) using 

Parker's formula (5.2) (the continuous curve) and using the revised formula [8] (the dashed curve). 
The limit value (as T ---) ~ )  of this ratio is equal to 2.23. For T > 900 K, the relative contribution of 
the vibrational degrees of freedom to the specific heat becomes substantial. 

The heat flux vector is given by formula (1.25). We will write the thermal conductivity in the form 
[131 

=  gnA, A = + n = k_ (5.3) 
m 

where ~ and 9~ are due to the translational and rotational degrees of freedom respectively. In practice, 
one is usually limited to the modified Eucken approximation [3]. Here 

)~* = 1 )~ = al_7.~[~t _- a~ 1.328, [~t = p'~ (5.4) 
' . ,  l . ,  11 

where ~ is the self-diffusion coefficient of the gas, ignoring rotational degrees of freedom. The quantity 
~t depends slightly on the intermolecular potentials, and therefore its average value, given in the second 
formula of system (5.4), is used [3]. In this approximation, the Prandtl number Pr = 7C~I]/9~ = const 
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(recall that ~, and C~ are constant quantities). At low T, the accuracy of approximation (5.4) is inadequate, 
and the Mason-Monchic approximation [8] is used, namely 

~.* = 1 A ~ P~R - ~ ,  ~,* = ( I + A ) ,  13n= ~] 

5 - 2 ~ n V l +  2 ( 5  +13 R O = - - -  
A =  n Z  t_ ' 

= 1 3 , q , ( r )  

(5.5) 

where ~n is the self-diffusion coefficient of the gas, taking into account the rotational degrees of freedom. 
The ratio ~n /~  will be estimated using Sandler's approximate formula [8] 

~ n l ~  - ~(T) = 1 + 0.27Z -I - 0.44Z -2 - 0.90Z -3 (5.6) 

In approximation (5.5), (5.6), the Prandtl number depends on the temperature T. 

6. THE A B S O R P T I O N  AND D I S P E R S I O N  OF SOUND 

The bulk viscosity is important if it is of the order of the dynamic viscosity and must be taken into account 
mainly by the Kn < 1 approximation. An example is the propagation of small perturbations in a 
molecular gas with excited rotational degrees of freedom. The dimensionless absorption coefficient 

= ~xlKn+O(Kn3), Kn = O~rllp~. 1 (6.1) 

where co is the frequency. We emphasize that all the quantities (i.e. p, 11, g, etc.) occurring in formula 
(6.1) and formulae (6.2)-(6.4) given below are equal to their values in a stationary gas. 

The coefficient cq is well known [2], since it is given by the Navier-Stokes approximation 

2B 8 ~  3_g (6.2) ~1 = ~ + A(T-1)2 ,  B = l + 4 r l  

Much less familiar is the fact that dispersion of sound should be investigated within the framework of 
Burnett's approximation, since the Navier-Stokes and Burnett terms of the transport properties make 
a contribution of the same order of magnitude to the deviation of the dispersion coefficient from the 
limit value as Kn -~ 0 (see, for example, [13]). 

The dimensionless dispersion coefficient 

[3 = 1 - ~2Kn 2 + O(Kn4), [3 2 = K 1 + K 2 (6.3) 
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characterizes the change in the phase velocity as Kn increases. The coefficient 

2B 2 2 5 B . .  )2 225 2. 
!r I = - -  1 + 1)3(3~/-7) 3),2 + "~T3 At) ' -  12874 A t T -  (6.4) 

is given by the Navier-Stokes approximation, while the coefficient 

] ( -  l ( 7 r ~  - Q3)  + 2Q23), 

is governed by the Burnett terms of the transport properties [13], where 

1 5 o  (~,2 5--.2"~ 8 ,  ~ ( n _ l ) ( ~ , t ,  1~,~) 
QI = 7"(i+~)~. t + ~aA'R ) -  ffkt - 

5 . 
Q2 = I + 2 ( 1 + 6 ) ( B - 1 )  2, 03 = ~'t*+~(~'t-(Y~,~)(B-1) 

(6.5) 

(6.6) 

The quantities in expressions~6.2) and (6.4)-(6.6) will be calculated using the formulae from the 
previous section for nitrogen (c~ = k, ~, = 7/5). The quantity B is defined by the second formula of 
system (6.2). 

We will denote by 

0~* = al (  ~ = 0)/(ll(~ :;/: 0), ~* ---- ~2(~---- O)/~2(g :g: O) 

the ratios defining the contribution of the bulk viscosity to the absorption and dispersion coefficients. 
The values of the quantities in the numerators are obtained if we put B = 1 in formulae (6.2), (6.4) and 
(6.6). 

The results of calculations of these ratios are given in Fig. 1. The bulk viscosity has a particularly 
strong effect on the dispersion coefficient [32; the quantity Q2 is quadratic in ~. We emphasize, however, 
that, when the bulk viscosity has a considerable influence, it might be necessary to change to a relaxation 
description [8], i.e. xR/t. must not be assumed to be a small quantity. 

7. T H E  S H O C K - W A V E  S T R U C T U R E  

As noted in the introductory part of this paper, the relative magnitude of the bulk viscosity gradient in 
the equation of motion of a compressible fluid in general is of the order of Re -1. However, this is valid 
if the gas temperature is sufficiently high, such that q - 11, and if the velocity divergence is not small. 
An upper estimate of this influence is obtained if we consider the question of the influence of the bulk 
viscosity on the shock wave structure, since here Re - 1, q ~ rl and V �9 u ~ u/L. The problem of the 
structure of a weak shock wave in a molecular gas was solved earlier in [13]. We will denote by u* and 
T* the reduced valves of the velocity and temperature in a shock wave 

u* u(~) - u ( - ~ )  T* T(~) - T(-**) (7.1) 
= u(oo)  - u ( - o o ) '  = T ( o . )  - T ( - o o )  

where { is the dimensionless streamwise coordinate [13]. The first approximation with respect to the 
parameter of the shock wave intensity is given by the Navier-Stokes approximation (in the following 
approximation, allowance for the Burnett transport properties is necessary [13]). Here  

u* = T* = (l  + t h ( ~ / b ) ) / 2 ,  b = 8"~2~1(~t+1) (7.2) 

The absorption coefficient ~1 is defined by the first formula of system (6.2) and is calculated from data 
for unperturbed flow. When the ratio c.Jrl increases, the coefficient b increase. Consequently, the region 
of perturbed flow expands in terms of {. 

In applications, the question of the influence of bulk viscosity on the T and p profiles in shock waves 
of moderate and high intensity is of greater interest. The equations 

A r = T ( q - 0 ) / T ( q # 0 ) ,  Ap = p ( { = 0 ) / p ( q # 0 )  



954 V.S. Galkin and S. V. Rusakov 

1.0 

0.5 

\ 
Ap 

- 4  -2  0 x* 

Fig. 2 

denote the ratios of the values of temperature and density calculated using the Navier-Stokes equations 
by the method proposed in [14] for g = 0 and g ~ 0 (we recall that, in a shock wave, p - 1/u). The data 
in Fig. 2 were obtained for T(--~) = 100 K, the Mach number upstream of the wave M = 5 (the dashed 
curves) and M = 11 (the continuous curves), the streamwise coordinate x* is referred to the mean free 
path upstream of the wave, and the value of the reduced density p* = 1/2 corresponds to the value 
x* = 0 [141. 

The formulae from Section 4 are used, and, in particular, formula (5.2) for Z. 
The bulk viscosity changes the density and temperature profiles considerably, especially in the front 

zone of the shock wave. Its influence increases as the Mach number increases. 
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